Gating Competence of Constitutively Open CLC-0 Mutants Revealed by the Interaction with a Small Organic Inhibitor
نویسندگان
چکیده
Opening of CLC chloride channels is coupled to the translocation of the permeant anion. From the recent structure determination of bacterial CLC proteins in the closed and open configuration, a glutamate residue was hypothesized to form part of the Cl--sensitive gate. The negatively charged side-chain of the glutamate was suggested to occlude the permeation pathway in the closed state, while opening of a single protopore of the double-pore channel would reflect mainly a movement of this side-chain toward the extracellular pore vestibule, with little rearrangement of the rest of the channel. Here we show that mutating this critical residue (Glu166) in the prototype Torpedo CLC-0 to alanine, serine, or lysine leads to constitutively open channels, whereas a mutation to aspartate strongly slowed down opening. Furthermore, we investigated the interaction of the small organic channel blocker p-chlorophenoxy-acetic acid (CPA) with the mutants E166A and E166S. Both mutants were strongly inhibited by CPA at negative voltages with a >200-fold larger affinity than for wild-type CLC-0 (apparent KD at -140 mV approximately 4 micro M). A three-state linear model with an open state, a low-affinity and a high-affinity CPA-bound state can quantitatively describe steady-state and kinetic properties of the CPA block. The parameters of the model and additional mutagenesis suggest that the high-affinity CPA-bound state is similar to the closed configuration of the protopore gate of wild-type CLC-0. In the E166A mutant the glutamate side chain that occludes the permeation pathway is absent. Thus, if gating consists only in movement of this side-chain the mutant E166A should not be able to assume a closed conformation. It may thus be that fast gating in CLC-0 is more complex than anticipated from the bacterial structures.
منابع مشابه
Inward Rectification in ClC-0 Chloride Channels Caused by Mutations in Several Protein Regions
Several cloned ClC-type Cl- channels open and close in a voltage-dependent manner. The Torpedo electric organ Cl- channel, ClC-0, is the best studied member of this gene family. ClC-0 is gated by a fast and a slow gating mechanism of opposite voltage direction. Fast gating is dependent on voltage and on the external and internal Cl- concentration, and it has been proposed that the permeant anio...
متن کاملTemperature Dependence of Fast and Slow Gating Relaxations of ClC-0 Chloride Channels
The chloride channel from the Torpedo electric organ, ClC-0, is the best studied member of a large gene-family (Jentsch, T.J. 1996. Curr. Opin. Neurobiol. 6:303-310.). We investigate the temperature dependence of both the voltage- and chloride-dependent fast gate and of the slow gate of the "double-barreled" ClC-0 expressed in Xenopus oocytes. Kinetics of the fast gate exhibit only a moderate t...
متن کاملModulation of the slow/common gating of CLC channels by intracellular cadmium
Members of the CLC family of Cl(-) channels and transporters are homodimeric integral membrane proteins. Two gating mechanisms control the opening and closing of Cl(-) channels in this family: fast gating, which regulates opening and closing of the individual pores in each subunit, and slow (or common) gating, which simultaneously controls gating of both subunits. Here, we found that intracellu...
متن کاملModulation of ClC-K channel function by the accessory subunit barttin.
The human ClC-Ka/ClC-Kb and rodent ClC-K1/ClC-K2 channels are the pore-forming channel proteins participating in electrolyte transport across the thick (ClC-Kb, ClC-K2) and thin (ClC-Ka, ClC-K1) ascending limbs of Henle’s Loop; further nephron segments, such as distal convoluted tubule and collecting duct (ClC-K2, ClC-Kb); and the marginal cells of the stria vascularis in the inner ear (ClC-Ka,...
متن کاملNonequilibrium gating and voltage dependence of the ClC-0 Cl- channel
The gating of ClC-0, the voltage-dependent Cl- channel from Torpedo electric organ, is strongly influenced by Cl- ions in the external solution. Raising external Cl- over the range 1-600 mM favors the fast-gating open state and disfavors the slow-gating inactivated state. Analysis of purified single ClC-0 channels reconstituted into planar lipid bilayers was used to identify the role of Cl- ion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 122 شماره
صفحات -
تاریخ انتشار 2003